Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows
نویسندگان
چکیده
The increasing demand for individual and more flexible process models and workflows asks for new intelligent process-oriented information systems. Such systems should, among other things, support domain experts in the creation and adaptation of process models or workflows. For this purpose, repositories of best practice workflows are an important means as they collect valuable experiential knowledge that can be reused in various ways. In this chapter we present process-oriented casebased reasoning (POCBR) as a method to support the creation and adaptation of workflows based on such knowledge. We provide a general introduction to processoriented case-based reasoning and present a concise view of the POCBR methods we developed during the past ten years. This includes graph-based representation of semantic workflows, semantic workflow similarity, similarity-based retrieval, and workflow adaptation based on automatically learned adaptation knowledge. Finally, we sketch several application domains such as traditional business processes, social workflows, and cooking workflows.
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملAutomatic Construction of Persian ICT WordNet using Princeton WordNet
WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملRetrieval of Semantic Workflows with Knowledge Intensive Similarity Measures
We describe a new model for representing semantic workflows as semantically labeled graphs, together with a related model for knowledge intensive similarity measures. The application of this model to scientific and business workflows is discussed. Experimental evaluations show that similarity measures can be modeled that are well aligned with manual similarity assessments. Further, new algorith...
متن کامل